3.46 \(\int (e x)^m \left (a+b x^2\right )^p \left (A+B x^2\right ) \left (c+d x^2\right ) \, dx\)

Optimal. Leaf size=253 \[ -\frac{(e x)^{m+1} \left (a+b x^2\right )^p \left (\frac{b x^2}{a}+1\right )^{-p} \, _2F_1\left (\frac{m+1}{2},-p;\frac{m+3}{2};-\frac{b x^2}{a}\right ) (A b (m+2 p+3) (a d (m+1)-b c (m+2 p+5))-a (m+1) (a B d (m+3)-b (2 A d+B c (m+2 p+5))))}{b^2 e (m+1) (m+2 p+3) (m+2 p+5)}-\frac{(e x)^{m+1} \left (a+b x^2\right )^{p+1} (a B d (m+3)-b (2 A d+B c (m+2 p+5)))}{b^2 e (m+2 p+3) (m+2 p+5)}+\frac{d \left (A+B x^2\right ) (e x)^{m+1} \left (a+b x^2\right )^{p+1}}{b e (m+2 p+5)} \]

[Out]

-(((a*B*d*(3 + m) - b*(2*A*d + B*c*(5 + m + 2*p)))*(e*x)^(1 + m)*(a + b*x^2)^(1
+ p))/(b^2*e*(3 + m + 2*p)*(5 + m + 2*p))) + (d*(e*x)^(1 + m)*(a + b*x^2)^(1 + p
)*(A + B*x^2))/(b*e*(5 + m + 2*p)) - ((A*b*(3 + m + 2*p)*(a*d*(1 + m) - b*c*(5 +
 m + 2*p)) - a*(1 + m)*(a*B*d*(3 + m) - b*(2*A*d + B*c*(5 + m + 2*p))))*(e*x)^(1
 + m)*(a + b*x^2)^p*Hypergeometric2F1[(1 + m)/2, -p, (3 + m)/2, -((b*x^2)/a)])/(
b^2*e*(1 + m)*(3 + m + 2*p)*(5 + m + 2*p)*(1 + (b*x^2)/a)^p)

_______________________________________________________________________________________

Rubi [A]  time = 0.615577, antiderivative size = 238, normalized size of antiderivative = 0.94, number of steps used = 4, number of rules used = 4, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.138 \[ \frac{(e x)^{m+1} \left (a+b x^2\right )^{p+1} (-a B d (m+3)+2 A b d+b B c (m+2 p+5))}{b^2 e (m+2 p+3) (m+2 p+5)}-\frac{(e x)^{m+1} \left (a+b x^2\right )^p \left (\frac{b x^2}{a}+1\right )^{-p} \, _2F_1\left (\frac{m+1}{2},-p;\frac{m+3}{2};-\frac{b x^2}{a}\right ) \left (\frac{a (-a B d (m+3)+2 A b d+b B c (m+2 p+5))}{b (m+2 p+3)}+a A d-\frac{A b c (m+2 p+5)}{m+1}\right )}{b e (m+2 p+5)}+\frac{d \left (A+B x^2\right ) (e x)^{m+1} \left (a+b x^2\right )^{p+1}}{b e (m+2 p+5)} \]

Antiderivative was successfully verified.

[In]  Int[(e*x)^m*(a + b*x^2)^p*(A + B*x^2)*(c + d*x^2),x]

[Out]

((2*A*b*d - a*B*d*(3 + m) + b*B*c*(5 + m + 2*p))*(e*x)^(1 + m)*(a + b*x^2)^(1 +
p))/(b^2*e*(3 + m + 2*p)*(5 + m + 2*p)) + (d*(e*x)^(1 + m)*(a + b*x^2)^(1 + p)*(
A + B*x^2))/(b*e*(5 + m + 2*p)) - ((a*A*d - (A*b*c*(5 + m + 2*p))/(1 + m) + (a*(
2*A*b*d - a*B*d*(3 + m) + b*B*c*(5 + m + 2*p)))/(b*(3 + m + 2*p)))*(e*x)^(1 + m)
*(a + b*x^2)^p*Hypergeometric2F1[(1 + m)/2, -p, (3 + m)/2, -((b*x^2)/a)])/(b*e*(
5 + m + 2*p)*(1 + (b*x^2)/a)^p)

_______________________________________________________________________________________

Rubi in Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((e*x)**m*(b*x**2+a)**p*(B*x**2+A)*(d*x**2+c),x)

[Out]

Timed out

_______________________________________________________________________________________

Mathematica [A]  time = 0.226034, size = 147, normalized size = 0.58 \[ x (e x)^m \left (a+b x^2\right )^p \left (\frac{b x^2}{a}+1\right )^{-p} \left (\frac{x^2 (A d+B c) \, _2F_1\left (\frac{m+3}{2},-p;\frac{m+5}{2};-\frac{b x^2}{a}\right )}{m+3}+\frac{A c \, _2F_1\left (\frac{m+1}{2},-p;\frac{m+3}{2};-\frac{b x^2}{a}\right )}{m+1}+\frac{B d x^4 \, _2F_1\left (\frac{m+5}{2},-p;\frac{m+7}{2};-\frac{b x^2}{a}\right )}{m+5}\right ) \]

Antiderivative was successfully verified.

[In]  Integrate[(e*x)^m*(a + b*x^2)^p*(A + B*x^2)*(c + d*x^2),x]

[Out]

(x*(e*x)^m*(a + b*x^2)^p*((A*c*Hypergeometric2F1[(1 + m)/2, -p, (3 + m)/2, -((b*
x^2)/a)])/(1 + m) + ((B*c + A*d)*x^2*Hypergeometric2F1[(3 + m)/2, -p, (5 + m)/2,
 -((b*x^2)/a)])/(3 + m) + (B*d*x^4*Hypergeometric2F1[(5 + m)/2, -p, (7 + m)/2, -
((b*x^2)/a)])/(5 + m)))/(1 + (b*x^2)/a)^p

_______________________________________________________________________________________

Maple [F]  time = 0.08, size = 0, normalized size = 0. \[ \int \left ( ex \right ) ^{m} \left ( b{x}^{2}+a \right ) ^{p} \left ( B{x}^{2}+A \right ) \left ( d{x}^{2}+c \right ) \, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((e*x)^m*(b*x^2+a)^p*(B*x^2+A)*(d*x^2+c),x)

[Out]

int((e*x)^m*(b*x^2+a)^p*(B*x^2+A)*(d*x^2+c),x)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int{\left (B x^{2} + A\right )}{\left (d x^{2} + c\right )}{\left (b x^{2} + a\right )}^{p} \left (e x\right )^{m}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((B*x^2 + A)*(d*x^2 + c)*(b*x^2 + a)^p*(e*x)^m,x, algorithm="maxima")

[Out]

integrate((B*x^2 + A)*(d*x^2 + c)*(b*x^2 + a)^p*(e*x)^m, x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left ({\left (B d x^{4} +{\left (B c + A d\right )} x^{2} + A c\right )}{\left (b x^{2} + a\right )}^{p} \left (e x\right )^{m}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((B*x^2 + A)*(d*x^2 + c)*(b*x^2 + a)^p*(e*x)^m,x, algorithm="fricas")

[Out]

integral((B*d*x^4 + (B*c + A*d)*x^2 + A*c)*(b*x^2 + a)^p*(e*x)^m, x)

_______________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x)**m*(b*x**2+a)**p*(B*x**2+A)*(d*x**2+c),x)

[Out]

Timed out

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int{\left (B x^{2} + A\right )}{\left (d x^{2} + c\right )}{\left (b x^{2} + a\right )}^{p} \left (e x\right )^{m}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((B*x^2 + A)*(d*x^2 + c)*(b*x^2 + a)^p*(e*x)^m,x, algorithm="giac")

[Out]

integrate((B*x^2 + A)*(d*x^2 + c)*(b*x^2 + a)^p*(e*x)^m, x)